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1 Analytical Functions

Complex variable — z = x+ iy, x, y ∈ R
We talk about functions which are analytic functions in a specific sense of x + iy on the complex plane.

x and y are linearly independent, and z∗ = x − iy is linearly independent to z, and by speaking about

analytical functions we impose that the function depends on z and not on z∗. We will make this idea much

more precise in the future.

Before discussing analytical functions, we need to discuss about stereographic projections. In simple x line,

there is only two infinite points, one at +∞ and other at −∞. But in a complex plane, there are infinte

number of infinities, one for each direction you can pick. The standard trick is to try and put the points

at infinity at the same footing as any finite point. This is done by stereographic projection.

1.1 Stereographic Projection

The idea is to compactify the space by lifting the plane and sewing all points at infinity to one single point,

which will form a sphere. This will be our model for complex plane.

To make it more concrete, consider a complex plane x, y, and a unit sphere with coordinates ξ1 =

sin θ cosϕ, ξ2 = sin θ sinϕ, ξ3 = cos θ, satisfying the constraint ξ21 + ξ22 + ξ23 = 1.

Figure 1: Stereographic projection

What we do is, we pick a point on the complex plane, and draw a line connecting it to the north pole of

the sphere. This line will intersect the sphere at some point, and we map these two points as equivalent.

We see that all points inside the unit circle on the complex plane get mapped to the southern hemisphere,

and all points outside get mapped to the norther hemisphere. The equator of the sphere is the unit circle

on the complex plane. All the infinities get mapped to the north pole, while the origin gets mapped to the

south pole.

The equations connecting x and y to the ξ’s can be found by seeing that, from the similarity of ∆ANB
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and ∆ONP in figure 2, we get
ON

AN
=
OP

AB

N

O
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P

1

ξ3

ξ1
x

Figure 2: x in terms of ξs

which gives

x =
ξ1

1− ξ3
(1.1)

y =
ξ2

1− ξ3
(1.2)

and therefore

z =
1

1− ξ3
(ξ1 + iξ2) (1.3)

Writing in terms of θ and ϕ, we see

x = cot
θ

2
cosϕ (1.4)

y = cot
θ

2
sinϕ (1.5)

and therefore

z = x+ iy = cot
θ

2
eiϕ (1.6)

The sphere we constructed above is called the Riemann sphere.

We can find the inverse relations as
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ξ1 =
2x

x2 + y2 + 1
=

z + z∗

|z|2 + 1
(1.7)

ξ2 =
2y

x2 + y2 + 1
=

z − z∗

i(|z|2 + 1)
(1.8)

ξ3 =
x2 + y2 − 1

x2 + y2 + 1
=

|z|2 − 1

|z|2 + 1
(1.9)

Usually we consider complex plane without the infinity, i.e. we define

C := {z : |z| <∞}

If we include the point at infinity, we call it the extended complex plane and we denote it as Ĉ. The

Riemann sphere provides a model for the extended complex plane. By doing this compactification, we can

now rigorously do calculus on it.

1.2 Notion of distance on the Riemann Sphere

There are many ways one can define a distance on the Riemann sphere, one common way being the geodesic

distanec. But we have another distance, which is more convenient called the chordal distance, i.e. given

two points z1 and z2 on the complex plane, we draw a chord through the hollow sphere connecting the two

points when mapped to the sphere, and the length of the chord is the distance. We get that

d(z1, z2) =
2|z1 − z2|√

(|z1|2 + 1)(|z2|2 + 1)

This satisfies all the properties we need of a distance function, i.e.

• d(z1, z2) ≥ 0, equality holding only when z1 = z2

• d(z1, z2) + d(z2, z3) ≥ d(z1, z3)

• d(z2, z1) = d(z1, z2)

What does it mean when we talk about the distance to infinity?

In the limit z2 → ∞, we get

d(z,∞) =
2√

|z|2 + 1

which is nothing but the chordal distance between the point z and the north pole.

1.3 Analytic Function in Some Region

A function f(z) = u(x, y) + iv(x, y) is analytic if the Cauchy-Riemann conditions are satisfied, i.e.

∂u

∂x
=
∂v

∂y
,
∂v

∂y
= −∂v

∂x
(1.10)
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This is simply a restatement of the requirement that f does not at all depend on z∗, or in other words
∂f

∂z∗
= 0. That is, f depends only on the combinatin x+ iy and not on the combination x− iy at all.

∂f

∂z∗
= 0 =⇒ ∂f

∂x

∂x

∂z∗
+
∂f

∂y

∂y

∂z∗
=
∂f

∂x
− i

∂f

∂y
= 0

Substituting f = u+ iv, we get the C-R conditions.

This immediately tells you that for a function to be analytic in a given region, it can not be purely imagi-

nary or purely real, in which case the function would have to depend on z∗. We see that x, y, r, θ etc. are

NOT analytic functions, since they all depend on z∗.

One consequence of the C-R conditions is that

∂2u

∂x2
+
∂2u

∂y2
= 0, &

∂2v

∂x2
+
∂2v

∂y2
= 0

Therefore, the real and imaginary parts of the analytic function should independently satisfy Laplaces

equation, and therefore are harmonic functions.

If the function is analytic in the whole of complex plane C (without ∞), then f is called an entire function.

Euler’s theorem — If you have a function that is entire, and at infinity they are not singular and satisfy

the C-R conditions, then the function should be a constant function

Therefore, for all normal entire functions like z, z2, ez, sin z etc, the point at infinity is a singularity and is

called an essential singularity.

1.4 Derivative of Complex Function

In the case of complex functions, the derivative,

df(z)

dz
= lim

δz→0

f(z + δz)− f(z)

δz

has an ambiguity in deciding what direction should δz take.

We can write δz = ϵeiα, where now ϵ is the controlling factor that should go to zero, and α is simply an

angle, we get

df(z)

dz
= e−iα

(
lim
ϵ→0

u(x+ ϵ cosα, y + ϵ sinα)− u(x, y)

ϵ
+ i lim

ϵ→0

v(x+ ϵ cosα, y + ϵ sinα)− v(x, y)

ϵ

)
which evaluates to

e−iα

(
∂u

∂x
cosα+

∂u

∂y
sinα+ i

∂v

∂x
cosα+ i

∂v

∂y
sinα

)

4



We can rearrange this in the form

df(z)

dz
= e−iα

((
∂u

∂x
cosα+ i

∂v

∂y
sinα

)
+ i

(
∂v

∂x
cosα− i

∂u

∂y
sinα

))
We impose that this shold not have any α dependence, which requires the C-R conditions to be satisfied,

in which case the eiα from inside the bracket cancels the e−iα from outside.

Why does the condition that there should be no z∗ dependence lead to the derivative being direction

independent?

Consider the above discussed limit, (with δz = ϵeiα =⇒ δz∗ = ϵe−iα)

lim
δz→0

f(z + δz)− f(z)

δz
= lim

δz→0

f(z + δz)− f(z)

δz
= lim

ϵ→0
e−iα

(
∂f
∂z δz +

∂f
∂z∗ δz

∗

ϵ

)

which is equal to

e−iα

(
∂f

∂z
eiα +

∂f

∂z∗
e−iα

)
=
∂f

∂z
+
∂f

∂z∗
e−2iα

We see that the direction dependence in the limit comes multiplied with
∂f

∂z∗
. Therefore, requiring direc-

tional independence requires f to not have a dependence on z∗ and vice versa.

1.5 Power Series in Complex Variables

Analyticity implies that the derivative itself of an analytic function is analytic, and so on, and therefore

all analytic functions on the complex plane are infinitely differentiable. What this means is that we can

always represent an analytic function in a neighborhood as a Taylor series, i.e. in a region

f(z − z0) =
∑
n

an(z − z0)
n, an =

1

n!

∂nf(z)

∂zn

∣∣∣∣
z=z0

For every power series about the point z0, there is some circle about the point with radius R such that for

all points z inside this circle, ∑
n

|an(z − z0)
n| <∞

i.e. Absolute convergance. The radius of convergence is given by

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣
A better definition is

R = lim
n→∞

sup |an|1/n

What happens if R is infinite? Then it means that the function is an entire function.
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As examples, consider the function

ez =
∑ 1

n!
zn

For this, the ratio test gives

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

z

n+ 1
= 0 ∀z <∞ (1.11)

Therefore, the series representation of ez is convergent, and the radius of convergence is ∞.

What about the series ∑
zn

This converges for |z| < 1, therefore the radius of convergence R = 1.

But we know that the function
1

1− z

represents this infinite series inside the unit circle |z| < 1. We are guarenteed that for any z inside the

unit circle, the series and the function exactly match. But for |z| ≥ 1, the series doesn’t converge, but the

function gives a finite value. The function blows up only at z = 1, and is analytic everywhere except at

z = 1. We call the function the analytic continuation of the series.

Analytic continuation — we have a representation for a series, which matches the series point by point

in some region. The series is not convergent in some region, but is not defined at some other, while the

representation is defined in a bigger region. Then the representation is called the analytical continuation

of the series.

Consider the expansion of 1
1−z about some other point, lets say z = −1

2 .

1

1− z
=

1
3
2 −

(
z + 1

2

) =
2

3

1

1− 2
3

(
z + 1

2

) =
2

3

∑(
2

3

)n(
z +

1

2

)n

This converge in a circle with radius R = 3
2 centered at z = −1

2 This is still undefined at z = 1. This series

is also valid in the region outside the unit circle. Now we can again write an expansion which is inside this

circle, but outside the unit cirlce, and by repeatedly doing so, we can write an infinite number of series

for the same function which have overlaps with each other and match the function in different regions,

together covering the entire complex plane. Each of the series will have a boundary passing through z = 1,

and each of the series are analytical continuations of each other, valid in different regions. For each repre-

sentation, we need to say where it is valid. In general we won’t be able to find the master representation

function, but we will be able to find the different series representations valid for different regions, and these

representations are analytical continuations of each other.
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For any power series, there exists a circle of convergence, and the power series is absolutely convergant

inside the circle, and divergant outside. Not much can be told about what happens on the circle of

convergance, and should be dealt with on case-by-case basis.

As an example consider z = −1 on
∑
zn. The sum is 1 − 1 + 1 − 1 + 1 − 1 + · · ·. This doesn’t make

sense, but we can consider the partial sums. The partial sums would be 1, 0, 1, 0, · · ·, and the average of

the partial sums is 1
2 , and plugging in z = −1 in the function also gives 1

2 . Similarly, consider at z = i.

The series gives 1 + i− 1− i+ · · ·. The partial sums is 1, 1 + i, i, 0, · · · and the average of the partial sums

is 1+i
2 . In this case, again the function gives the same value. This sort of thing is called a Cesaro sum.

That is, the arithmatic average of the partial sums is guarenteed to match the value of the function.

Theorem — The function which a given power series represents should have atleast one singularity on the

circle of convergence.

We might observe that for some series, the power series actually converges at the boundary, in which case

on the surface it might look like the above theorem is broken. As an example,

f(z) =
∑ zn

n2

is convergent in |z| ≤ 1. But the function this series represents has a singularity at z = 1. This is a subtle

type of singularity, to understand which let us consider a function of the form (1− z) log(1− z). At z = 1

this has a logarithmic divergance, but the polynomial factor in front of it goes to 0, and therefore in the

limit, the entire function goes to zero. This doesn’t mean that the function is analytic at z = 1. There is

still a singularity, and it is this type of singularity that is present on the boundary.

It is also possible that there are infinite number of singularities on the boundary. As an example consider

the series

f(z) = z + z2 + z4 + · · · ≡
∑

z2n

This has radius of convergance R = 1, and is convergant in |z| < 1.

Now, this series is defninitely singular at z = 1. but the function can also be written as

f(z) = z + f(z2)

This implies that it is also singular at z = −1. We can also write the series as

f(z) = z + z2 + f(z4)

which implies the function is singular at ±i too, and we can similarly show that for all z on the boundary,

the function is singular. This means that there is no way in which we can analytically continue the function

to outside the given boundary.
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f(z) has a natural boundary |z| = 1. This type of series is called a Lacunary series.

If a function is analytical in some region, then within that region, we can also integrate the function. The

integration ˆ z2

z1

f(z)dz

is independent of the path chosen, as long as it is a connected path and never leaves the region of analyticity.

The immediate consequence is ffi
C
f(z)dz =

fi
C
f(z)dz = 0

This contour can be deformed, while still keeping the value of the integral same.

Why is this true?

This is the consequence of the C-R conditions.

Consider the integral of f(z) over a closed loop which is defined in the region where it is analytic.

ffi
C
f(z)dz

f(z) = u(x, y) + iv(x, y), and z = x+ iy, meaning

f(z)dz = (udx− vdy) + i(vdx+ udy)

For any contour C, Green’s theorem gives that

ffi
C
udx− vdy =

¨
R

(
−∂v
∂x

− ∂u

∂y

)
dA

and ffi
C
vdx+ udy =

¨
R

(
∂u

∂x
− ∂v

∂y

)
dA

Since at all points in the region enclosed by C, the C-R conditions are satisfied, the above contour integrals,

and as a result the integral
fl
C f(z)dz is therefore zero.

Now consider two points, z1 and z2, and two paths γ1 and γ2 connecting them. (we use −γ to denote the

path γ traced backwards, and the fact that integral over −γ is −1 times the integral over γ)

ffi
C
f(z)dz = 0 =⇒

ˆ
γ1

f(z)dz +

ˆ
−γ2

f(z)dz =

ˆ
γ1

f(z)dz −
ˆ
γ2

f(z)dz = 0

The above implies that the integral does not depend on the path.

Before discussing integration further, we need to discuss singularities.
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1.6 Singularities

There are multiple kinds of singularities, which are as follows

1.6.1 Removable singularities

Example, sin z
z . The limiting value at z = 0 is 1, and therefore, we can define the function such that it is

sin z
z at z ̸= 1 and 1 and z = 1, which retains not only the complete function behaviour, but removes the

singularity. These type of singularities are trivial, and are not at all to our interest.

1.6.2 Simple Poles

If around z = a, a function has the following form

f(z) =
c1

z − a
+

∞∑
n=0

cn(z − a)n

That is, it is mostly analytical having a power series representation, with an extra piece ∝ (z− a)−1, then

such a function is said to have a simple pole at a. The residue of the pole is the constant c−1.

For example,

f(z) =
sin z

z2

To find the type of singularity, use the fact that sine is an entire function and expand it in power series

f(z) =
1

z
− z

3!
+ · · ·

which has a simple pole at z = 0, with residue 1.

In general, if

f(z) =
g(z)

h(z)

with g(a) ̸= 0, and h(a) has a simple zero, i.e. h(z) is of the form (z − a)h′(a) + · · ·, then

f(z) =
g(a) + g′(a)(z − a) + · · ·

h′(a)(z − a) + · · ·

which means that the residue at z = a is
g(a)

h′(a)
.

To extract the residue of a function f(z) at z = a, we can also do

residue = lim
z→a

(z − a)f(z)

This is because when multiplied by (z− a), the singular part becomes simply the constant (residue), while

9



the analytical part goes to zero while taking the limit.

Example,
1

sinπz

This has singularities at all integers.

At z = 0, the leading behaviour of sinπz as z → 0 is zπ, and therefore the residue is
1

π
. For other integers,

we need to take the limit

lim
z→n

z − n

sinπz
=

(−1)n

π

1.6.3 Higher Order Poles

What happens if the function is of the form

f(z) =
∑

cn(z − a)n +
c−1

(z − a)
+

c−1

(z − a)2
+ · · ·+ c−m

(z − a)m

This function is said to have a pole of order m at z = a. The residue is still the coefficient of (z − a)−1,

i.e. c−1. To extract this, we can multiply the series by (z − a)m, and take the derivative with respect to z

m− 1 times and divide by (m− 1)!, and then take the limit z → a.

A very important question is where does the singular part of the series converge. The regular part converges

inside some region R, and the singular part usually converges outside some region W , which might also

be bigger than R. The only way this can make sense is if W ⊂ R, and the series is meaningful in the

annular reagion R −W . The series of this kind are called Laurent series, and they typically converge in

some annular region. This is typical behaviour and not necessary behaviour.
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2 Calculus of Residues

2.1 The Residue Theorem — Cauchy’s Integral Formula

Consider the integral ffi
C

1

zn+1
dz

over a contour enclosing the origin. We can deform this contour to make it a unit circle, on which z = eiθ,

and therefore dz = ieiθdθ. The integral therefore becomes

i

ˆ 2π

0
e−(n+1)iθeiθdθ = i

ˆ 2π

0
e−niθdθ = i

ˆ 2π

0
cos(nθ)− i sin(nθ)dθ

The integral of sine and cosine from 0 to 2π is zero, and therefore, the above integral is 0, unless when

n = 0, where the integral is simply i
´
dθ = 2πi.

Therefore the integral
ffi
C

1

zn+1
dz =

0 : n ̸= 0

2πi : n = 0

We can shift the contour and the singularity to some point z = a and write the integral on a contour that

contains a as ffi
C

1

(z − a)n+1
dz =

0 : n ̸= 0

2πi : n = 0

and similarly for the clockwise contour

fi
C

1

(z − a)n+1
dz =

0 : n ̸= 0

−2πi : n = 0

Note that the above integral is also zero if the closed contour does not contain the singularity.

Therefore for a general series,

f(z) = f(z) =

∞∑
n=0

cn(z − a)n +
c−1

(z − a)
+

c−1

(z − a)2
+ · · ·

the value of ˛
f(z)dz =

2πi c−1 : if the contour encloses the point z = a

0 : otherwise

since all the other terms in the series integrate out to zero.

This is called the Cauchy’s Integral Formula.
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One could question that since the function is not analytic in the entire region inside the contour, how can

we claim that the integral is contour independent. To answer this, consider the following case.

a

b

C1 C2

Consider taking a section of the path connecting the points a and b— C1, and deforming it to form another

path C2. Now one can ask if the integral of f(z) over C1 is equal to the integral over C2. As one can see,

these are indeed equal since the function is analytic in the entire shaded region, making the integral path

independent in that region.

Now since we can divide the entire contour into multiple sections, and each of them can be deformed

without altering the value of the integral, one can conclude that the entire closed contour integral is also

contour independent.

The contour integral changes values, only when while deforming the contour we pass through a singular

point, i.e. only if the shaded region in the above figure contained a pole.

Another way to look at this is by considering the following.

C1

C2

R

r

12



Rather than considering the entire region, consider only the annular region R. The analyticity of f(z) in

R together with Green’s theorem imply that

ffi
C1

f(z)dz +

fi
C2

f(z)dz = 0

We can extend the previous integral we performed over the unit circle to be over a circle of any radius r as

i

ˆ 2π

0
r−n−1e−(n+1)iθreiθdθ = i

ˆ 2π

0
r−ne−niθdθ = r−ni

ˆ 2π

0
cos(nθ)− i sin(nθ)dθ =

2πi : n = 0

0 : n ̸= 0

Which means that fi
C2

f(z)dz = −2πi× residue of f at 0

Therefore, one gets ffi
C1

f(z)dz = 2πi× residue of f at 0

where the integral is now contour independent, as long as the singularity is contained within it.

Further, since the integral over C2 does not depend on r, we can take the limit r → 0 and allow the contour

C1 to be deformed anywhere, as long as it does not pass the singularity.

We will now discuss a few applications of the Cauchy’s Integral Formula, with which we can understand it

in further depth.

2.2 Application — Recursion Relations

Suppose we are given a recursion relation, typically a two step recursion relation, which is equivalent to a

second order differential equation, whose solution can’t be written by inspection.

Suppose

cn+1 =
cn + cn+2

2

To solve this uniquely we need to specify initial values, c0 and cn, and the question that can be posed is

what is the general term cn.

The first thing we can do is day that

cn+2 − 2cn+1 + cn = 0

Now we define the generating function

f(z) =

∞∑
n=0

cnz
n

13



Now we can multiply the recursion relation by zn and sum over n to get

∞∑
n=0

cn+2z
n −

∞∑
n=0

2cn+1z
n +

∞∑
n=0

cnz
n = 0

=⇒ 1

z2
(f(z)− c1z − c0)−

2

z
(f(z)− c0) + f(z) = 0

=⇒ f(z) =
c0 + (c1 − 2c0)z

(z − 1)2

If given c0 and c1, we get a function. Now since f(z) is a Taylor series, we can write cn as the nth derivative

of f(z) but this is hard.

There is a better way to extract cn using an integral formula. We can do this by dividing by zn+1 and

integrating over a contour surrounding the origin.

cn =
1

2πi

ffi
C

dz

zn+1
f(z)

where C is a contour that encloses a region containing the origin.

In the example considered, we can do

cn =
1

2πi

ffi
dz

zn+1

c0 + (c1 − 2c0)z

(z − 1)2

We have a pole of order n+ 1 at 0 and a contour surrounding it, and another pole of order 2 at z = 1

If we want to do this integral directly, we have to find the residue at z = 0 which will involve differentiating

f(z) n times. Our life would have been easier if all we had to do was to somehow evaluate the integral

at z = 1. Well we can do this, by exploiting the path independence. We can deform the contour while

keeping track of the orientation without crossing the second pole as given in figure 3 where the dotted

line is now at infinity.

What is the contribution of the dotted line to the integral? Since z = reiθ, the relevent terms at infinity

and therefore the overall power of r in the above integral are
dz

zn+1

z

z2
=⇒ r

rn+1

r

r2
= r−n, where n > 0.

Therefore the contribution from the dotted part is zero.

14



=⇒ =⇒

Figure 3: Deforming the contour to wrap around a different pole.

There is a part of the contour on the x axis going to +∞ and another part returning from ∞. There are no

other singularities along the x axis, and therefore these two contributions cancel each other, and therefore,

the only contribution to the integral is from the, now clockwise, contour going around the pole at z = 1.

Therefore, the integral is equal to

cn =
1

2πi
(−2πi)

1

1!

d

dz

(
c0 + (c1 − 2c0)z

zn+1

) ∣∣∣∣
z=1

which given c0 = 1 and c1 = 2 is equal to n+ 1.

Excercise — cn+2 = cn+1 + cn with c0 = 0 & c1 = 1 Introducing the generating function,

∞∑
n=0

cn+2z
n −

∞∑
n=0

cn+1z
n −

∞∑
n=0

cnz
n = 0

=⇒ 1

z2
(f(z)− c1z − c0)−

1

z
(f(z)− c0)− f(z) = 0

=⇒ f(z) =
−c0 − c1z + c0z

z2 + z − 1
=

−z
z2 + z − 1

The roots of z2 + z − 1 are z = −1±
√
5

2 = α(β)

f(z) =
−z

(z − α)(z − β)

This has two poles at α and β, and we can again deform the counterclockwise contour around 0 to form

clockwise contours around α and β. At both, the poles are of order 1, and therefore the formula for cn is

simply

cn =
1

αn

1

α− β
+

1

βn
1

β − α
=

1

α− β

(
1

αn
− 1

βn

)
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2.3 Application — Evaluation of Infinite Series

As an example, consider the series

S(a) =

∞∑
n=1

1

n2 + a2

where a > 0.

First note that the series is even in n, and therefore

S(a) =
1

2

∞∑
n ̸=0,−∞

1

n2 + a2

Next we say that it would be very nice if this term appeared as a residue of some function f(z) at z = n.

That is, we need a function that has simple poles at all z = n, and the residue should be 1. We know of

such a function

g(z) = π
cosπz

sinπz

This is singular at all integer n, and the residue is exactly 1.

Now consider the function

f(z) = π
cotπz

z2 + a2

This has simple poles at all integers, and the residues is (n2 + a2)−1.

With this, we can write the infinite series as

S(a) =
1

2

1

2πi

∞∑
n̸=0,−∞

ffi
Cn

π
cotπz

z2 + a2

where Cns are counterclockwise contours that encloses only n.

Now we can to the reverse trick, we can deform each of the contours in the following fashion

=⇒ =⇒

Figure 4: Deforming the contours to merge.

Now since the integrand goes to zero as r → ∞, we can add a carefully chosen zero part, and connect the

two contours as in figure 5.

Since now we have a closed contour, we can shrink it back into a clockwise contour that enclose the poles

on the imaginary axis (notice that the function also has simple poles at z = ±ia), which can be further

shrunken into three contours each around ±ia & 0. Therefore, we have reduced the infinite sum into a
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Figure 5: Adding zero

finite sum

S(a) =
1

2

1

2πi

∑
n∈{0,−ia,ia}

ffi
Cn

π
cotπz

(z + ia)(z − ia)

Which can be evaluated as

S(a) = − 1

4πi
(−2πi)

(
1

a2
+
π cot iπa

2ia
− π cot−iπa

2ia

)
since cot is odd function,

S(a) = − 1

2a2
− π cot(iπa)

2ia
= − 1

2a2
+

π

2a

eπa + e−πa

eπa − e−πa
=

π

2a

(
cothπa− 1

πa

)
Now

cothx =
coshx

sinhx
=

(
1 + x2

2! + · · ·
)

x
(
1 + x2

3! + · · ·
) =

(
1 + x2

2! + · · ·
)(

1− x2

3! + · · ·
)

x
=

1

x
+
x

2
− x

6
· · · = 1

x
+
x

3
+ · · ·

Therefore,

S(0) = lim
a→0

π

2a

(
cothπa− 1

πa

)
= lim

a→0

π

2a

(
1

πa
+
πa

3
− 1

πa

)
=
π2

6

2.4 Application — Dirichlet Integral

The integral ˆ ∞

0
dx

sinx

x

17



This integral is finite. It is not absolutely integrable, i.e. when we try to integrate the absolute value of

the integrand, the integral diverges.

We can consider a generalisation of this

ˆ ∞

0
dx

sin bx

x
=
π

2
sgn(b)

We try to derive this using contour integrals. To do so, we write this as

ˆ ∞

0
dx

sin bx

x
=

1

2

ˆ ∞

−∞

sin bx

x

We want to close the contour in the upper and lower half planes and evaluate this integral. But we are in

trouble. Since sine is eiz − e−iz, one of these blows up in the upper half and the other blows up in lower

half. Therefore we cant add a 0 to the integral to close the contour.

Therefore, rather we need to consider the integral

1

2
Im

ˆ ∞

−∞
dx

eibx

x

but again in this integral, the integrand blows up at x = 0. Therefore we need to consider the following

contour.

X
R−R ϵ−ϵ

Figure 6: Contour for evaluating the Dirichlet Integral

The contour does not enclose any pole, and therefore, the integral over the contour is zero. Therefore,

ˆ −ϵ

−R
dx

eibx

x
+

ˆ R

ϵ
dx

eibx

x
+

ˆ 0

π
ϵeiθidθ

eibϵe
iθ

ϵeiθ
+

ˆ π

0
Reiθidθ

eibReiθ

Reiθ
= 0

The contour integral, where the contour symmetrically avoids the singularity is called the Cauchy Princi-

ple Value Integral. The first two terms of the above integral added together therefore forms the Cauchy

Principle Value Integral, and is denoted by P.

In the limit ϵ → 0, the exponential in the third term would be simply 1, and therefore the third term

would evaluate to −iπ. Since we are in the upper half plane, z has positive imaginary part, and therefore
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the integrand will be exponentially damped and therefore in the limit R→ 0, the last integral contributes 0.

Therefore

P
ˆ ∞

−∞
dx

eibx

x
− iπ = 0

equating the imaginary part we get

P
ˆ ∞

−∞
dx

sin ibx

x
= π

In the Imaginary part, at x = 0 there is no singularity, therefore we do not need the principle value, rather

this is equal to the integral iteself. Therefore

ˆ ∞

−∞
dx

sin ibx

x
= π =⇒

ˆ ∞

0
dx

sin ibx

x
=
π

2

Now if b was negative, then we should have closed in lower half plane, and then we would have picked a

negative sign.

We could have taken the path from −ϵ to ϵ in the lower half plane too, in which case the contour integral

would not be 0 but rather 2πi times the residue. Again we would have the same final answer.

2.5 Mittag-Leffler Representation

A meromorphic function — function who has at best only poles (of any order) in the entire finite part of

the complex plane, and do not have other types of singularities (like branch points etc).

For meromorphic functions, we can definitely write, in the neighbourhood of the poles, the function as

c(z − a)−1 plus some regular part. But the question is can we write the function as the singular parts at

all the poles plus some entire function? The answer is yes. If the function has finite number of poles, then

it is already in this form, but if it has infinite number of poles, then the question of convergence appears.

Such a representation is called a Mittag-Leffler representation and a classic example is the function cotπz.

We will derive the representation backwards using a known result here. We know that

∞∑
n=1

1

n2 + a2
=

π

2a

(
cothπa− 1

πa

)
, a ∈ R

We can consider this as a function of a, and we can analytically continue to make a a complex function.

Calling a = iz

π

2iz
coth iπz +

1

2z2
=

∞∑
n=1

1

n2 − z2
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Now since coth(ia) = −i cot(a)

− π

2z
cotπz +

1

2z2
=

∞∑
n=1

1

n2 − z2

=⇒ − π cotπz +
1

z
= 2

∞∑
n=1

z

n2 − z2

=⇒ cotπz =
1

πz
+

2

π

∞∑
n=1

z

z2 − n2

For the M-L representation, we need the sum to be explicitly on each pole, and therefore we can write the

above as

cotπz =
1

πz
+

2

π

∞∑
n=1

(
1

z − n
+

1

z + n

)
We still need to separate the two terms in the bracket into two sums. We cant naively do this since

separating out means that the individual sums will diverge. That is,

∞∑
n=1

1

z − n

diverges, and only when clubbed together do they converge. To remove this, we can add and subtract the

behaviour at infinity, i.e.

cotπz =
1

πz
+

2

π

∞∑
n=1

[(
1

z − n
+

1

n

)
+

(
1

z + n
− 1

n

)]

since the behaviour of 1
z−n at large n is − 1

n and similarly for the other term. By doing this, we cancel the

asymptotially large part of the two series at large n, and therefore we can separate out the sums as

cotπz =
1

z
+

∞∑
n=−∞

(
1

z − n
+

1

n

)

If we take the differentiation of the above w.r.to z,

π2

sin2 πz
=

∞∑
n=−∞

1

(z − n)2

where again we see that the LHS has a second order pole at all z = n, and the RHS is simply a sum over

all double pole terms, and nothing else.
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3 Linear Response & Dispersion Relations

We will start with a description of a physical problem — where one disturbs a system and the system

responds in some way. Roughly speaking, the greater the stimuli, the greater the response. This is called

linear response. Example, Ohm’s law — current proportional to voltage, Hook’s law — stress proportional

to strain, etc.

3.1 Generalised Susceptibility

When we apply a stimulus to a system, the response also depends on how the stimulus depends on time.

The most general thing to do is to take an arbitrary stimulus and ask how the system responds. And the

easiest way to do this would be to take a stimulus and break it into frequency components and superpose

the responses for each component.

Let us called the response of the system R(t), and the force that we apply (stimulus) F (t). The question

is how does R depend on F . We know that it should be a linear function, and that causality should be

preserved, so the general kind of thing we can write down is

R(t) =

ˆ t

−∞
dt′ϕ(t, t′)F (t′)

ϕ is a measure of response at t per unit force applied at t′, and the cutoff of the integral is at t since we

can’t have the R depend on future forces. Since ϕ doesn’t depend on F and therefore the response is linear

in F . Another thing we can impose on this is that, since there is time translation symmetry in the system,

ϕ should not depend absolutely on t and t′, but rather should depend on t− t′ (provided the system does

not change with time)

R(t) =

ˆ t

−∞
dt′ϕ(t− t′)F (t′)

With this requirement we call ϕ the retarded response, and this is the correct form of response for a causal

linear retarded response.

As an example, F (t) can be the electric field vector, with R(t) as the polarization vector, and the most

general linear combination of F would require ϕ to be a rank 2 tensor. Let us now stick to real functions.

What we expect the dependency of ϕ on τ = t − t′ is that its value at some non zero τ should not be

greater than that at τ = 0, since we do not expect the response due to force applied now to be greater in

the future than it is now.
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We can Fourier transform R as

R(t) =

ˆ ∞

−∞
dωe−iωtR̃(ω) ⇐⇒ R̃(ω) =

1

2π

ˆ ∞

−∞
dteiωtR(t)

and F (t) as

F (t) =

ˆ ∞

−∞
dωe−iωtF̃ (ω) ⇐⇒ F̃ (ω) =

1

2π

ˆ ∞

−∞
dteiωtF (t)

Plugging these, we get

ˆ ∞

−∞
dωe−iωtR̃(ω) =

ˆ t

−∞
dt′ϕ(t− t′)

ˆ ∞

−∞
dωe−iωt′F̃ (ω)

Provided these converge fast and uniformly enough, we can change the order of integration giving

ˆ ∞

−∞
dωe−iωtR̃(ω) =

ˆ ∞

−∞
dω

ˆ t

−∞
dt′ϕ(t− t′)e−iωt′F̃ (ω)

Let’s change variables from t′ to τ =⇒ dt′ = −dτ (using this negative sign to change the order of limits)

ˆ ∞

−∞
dωe−iωtR̃(ω) =

ˆ ∞

−∞
dω

ˆ ∞

0
dτϕ(τ)e−iω(t−τ)F̃ (ω)

=⇒
ˆ ∞

−∞
dωe−iωtR̃(ω) =

ˆ ∞

−∞
dωeiωt

ˆ ∞

0
dτϕ(τ)eiωτ F̃ (ω)

Collecting terms together

ˆ ∞

−∞
dωe−iωt

{
R̃(ω)−

(ˆ ∞

0
dτϕ(τ)eiωτ

)
F̃ (ω)

}
= 0

Since e−iωt forms a complete set of orthonormal functions, the above should be equal to zero coefficient by

coefficient, that is,

R̃(ω) =

(ˆ ∞

0
dt′ϕ(τ)eiωτ

)
F̃ (ω) = χ(ω)F̃ (ω) ∀ ω ∈ R

where χ(ω) is called the generalised susceptibility. χ gives the response per unit force of frequency ω. It is

related to the response function as

χ(ω) =

ˆ ∞

0
dτϕ(τ)eiωτ

This is not a Fourier transform, since the integral is not defined at negative τ , this is not even a Laplace

transform. So call it Fourier-Laplace transform XD.

Assume (very important assumption) that this integral actually exists and is finite. We also assume that

the integral exists for 0 frequency mode (the DC mode).

Notice that since ϕ and ω is real, Reχ(−ω) = Reχ(ω) and Imχ(−ω) = Imχ(ω). One of these will corre-

spond to dissipative effect and the other will correspond to reactive part. Which one is which will depend
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on the system, but in most systems the imaginary part is dissipative. Notice that ALL of response systems

are of this form!

3.2 Dispersion Relations

We notice that if the integral exists, then it also exists when there is a damping factor e−sτ . Therefore we

can extend the function to complex ω, with Imω ≥ 0, and the function χ(ω) is analytic in the upper half

plane. What happens in the lower half plane, we don’t know. W

Our target is to try and show that the analyticity of χ(ω) enables us to write the value of χ(ω) for any

ω ∈ R in terms of an integral over all other frequencies. This is called a dispersion relation.

To do so, let us first define

f(ω′) =
χ(ω′)

ω′ − ω

where ω′ is a complex variable, and ω is a real number.

Since χ is analytic everywhere in upper half plane, f has a pole only at the point ω on the real line.

Therefore, over a contour not enclosing ω and lying entirely in the upper half plane ,

˛
C
dω′ χ(ω

′)

ω′ − ω
= 0

Now, we do our usual trick of blowing up the contour to form the following

Xω − ϵ ω + ϵ

and over this contour too, this integral is zero. From this, we get

P
ˆ R

−R

χ(ω′)

ω′ − ω
dω′ −

ˆ π

0
iϵeiθdθχ(ω + ϵeiθ)

1

ϵeiθ
+ γ = 0

where as usual

P
ˆ R

−R

χ(ω′)

ω′ − ω
dω′ = lim

ϵ→0

(ˆ ω−ϵ

−R

χ(ω′)

ω′ − ω
dω′ +

ˆ R

ω+ϵ

χ(ω′)

ω′ − ω
dω′
)

and γ stands for the integral over the semicircle with radius R. As R→ ∞, γ will tend to 0 iff χ(ω′) goes

to zero as |ω′| → 0.

The limit of the integral over the small semicircle in the limit ϵ → 0 is simply πiχ(ω), and therefore, we
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get

χ(ω) =
1

iπ
P
ˆ ∞

−∞

χ(ω′)

ω′ − ω
dω′ (3.1)

This integral is over all real frequencies and we do not talk anything about the imaginary frequencies at all.

Now

Reχ(ω) =
1

π
P
ˆ ∞

−∞

Imχ(ω′)

ω′ − ω
dω′ & Imχ(ω) = − 1

π
P
ˆ ∞

−∞

Reχ(ω′)

ω′ − ω
(3.2)

Since the real part and the imaginary part of χ satisfy the above coupled equations, they are called Hilbert

transform pair. When we use these to solve for one of the two, we get a double integral, which evaluates

a δ function!!

Since in physical systems, negative frequency doesn’t make any sense, we can split the above integral into

two parts

Re(χ(ω)) =
1

π
P
ˆ 0

−∞

Imχ(ω′)

ω′ − ω
dω′ +

1

π
P
ˆ ∞

0

Imχ(ω′)

ω′ − ω
dω′

and make a change of variables in the first integral and use Imχ(−ω) = −Imχ(ω) to get

Re(χ(ω)) =
1

π
P
ˆ ∞

0
dω′Imχ(ω′)

(
1

ω′ + ω
+

1

ω′ − ω

)
=

2

π
P
ˆ ∞

0
dω′Imχ(ω′)

ω′

ω′2 − ω2

and similarly for

Im(χ(ω)) =
2

π
P
ˆ ∞

0
dω′Reχ(ω′)

ω

ω′2 − ω2

Now it makes sense physically. We see that neither of the real and imaginary parts cannot go to zero

without the other immediately becoming zero. These relations are called dispersion relations (in physics,

they are called Kramers-Kronig relation). Notice that analyticity came from the requirement of causality.

If the integral in the definition of χ ran from −∞ to ∞ one could never claim that we could extend the

integral to complex ω.

Now let us revisit one assumption we made earlier, about χ going to zero at infinity. It is possible that at

infinity, χ goes to some constant value which is non zero. In that case we can not claim the contribution

γ to be zero. In this case, there will be an extra contribution iπχ(∞). This is still manageable. But

there is no reason for χ to take on one single constant along all directions, i.e. it might still vary along

the semicircle at infinity. In that case, we can perform a trick of subtraction, where we now consider the

function

f(ω) =
χ(ω′)− χ(ω0)

(ω′ − ω)(ω′ − ω0)

where ω0 is some frequency for which we know the value of susceptibility. For this function, at infinity,

even if χ blows up, as long as it is not growing as fast as ω′ itself, the extra ω′ in the denominator makes

the entire integral go to zero. In doing this, we paid a price, we now need to know the susceptibility at one

point explicitly. This is called a subtracted dispersion relation. In case χ blows up faster, we aan subtract
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further terms to keep it in check. As long as it doesnt blow up as exponential, we can keep it in check.

3.3 Examples

Consider an LCR series circuit,

L
dI

dt
+RI +

1

C

ˆ t

−∞
dt′I(t′) = V

where V is now the stimulus and I is the response. To obtain the susceptibility, make the fourier transfor-

mation (
−iωL+R− 1

iωC

)
Ĩ(ω) = Ṽ (ω)

which implies,

Ĩ(ω) =
iω

L
(
ω2 + R

L iω − 1
LC

) Ṽ (ω)

which means

χ(ω) =
iω

L(ω2 + iγω − ω2
0)

where ω0 =
1√
LC

and γ =
R

L
. This has poles. The poles cannot be in upper half plane, and they are in

the lower half as we can check by finding their location. We can also show that the real and imaginary

part of χ satisfy the previously derived integral relations.

Now for a general physical system, the behaviour of ϕ to the lowest order is an exponential decay

ϕ(t) = ϕ0e
− t

τ

where τ is called the relaxation time. In which case we get

χ(ω) =

ˆ ∞

0
dteiωtϕ0e

− t
τ =

ˆ ∞

0
dtϕ0e

−(1−iωτ) t
τ =

ϕ0τ

1− iωτ
= ϕ0τ

(
1

1 + ω2τ2
+

iω

1 + ω2τ2

)
Again as expected, we have even and odd behaviours in the real and imaginary parts, and also a pole

which is in the lower half region. Such a model is called Debye relaxation.

What we do next is to plot the real part of χ vs the imaginary part of χ by eliminating the frequency.

This is called Cole-Cole plot. One can see that for the above χ, it is the following

1
2

ω = 0ω = ∞

ω = 1

Reχ

Imχ

25



That is, it is a semicircle centered at 1
2 . When this is experimentally measured and plotted, if the result

is exactly this semicircle, we can conclude that the response is an exponential decay. Usually there is a

deviation, where the two ends are not perpendicular to the x axis and therefore it doesnt form a semicircle,

and then there are more complicated cases, and in these cases the conclusions are that we need more

parameters, i.e. more relaxation times to describe the system. More characteristic behaviour of a system

is

ϕ(t) =

ˆ τmax

τmin

dτe−
t
τ σ(τ)

where we can have a large possibility of deviations, and we will be able to model a large variety of systems

with different behaviours.
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4 Analytic Continuation & Gamma Function

4.1 The Gamma Function

An instructive example to look at analytic continutation is the Gamma function.

ˆ ∞

0
tne−t = n!

Stirling’s formula

n! = nne−n
√
2πn

(
1 +

1

12n
+O(n2)

)
How do we get this formula? We see that tn is a rapidly increasing function, but e−t decreases faster

than tn, and therefore their product resembles a Gaussian. The approximation is that for the integral the

dominant component is only a region surrounding the maxima and the other contributions can be ignore.

That is, the above integral can be rewritten as

ˆ ∞

0
e−(t−n ln t)dt

and when f(t) = t− n ln t has extremum, this term contributes, and rest of the time it dies out.

f ′(t) = 1− n

t

which is 0 at t = n, and at t = n

f ′′(n) =
1

n

Now we can expand the function as

ˆ ∞

0
e−(n−n lnn+

(t−n)2

2!n
+··· )dt

The leading behaviour of this would be

n! = nne−n

ˆ ∞

0
dte−

(t−n)2

2n (1 + · · · )

Now it can be shown rigorously that the above integral is well damped if extended to −infty, in which

case it turns into a gaussian integral, whose first term would be
√
2πn, and the other correction terms follow.

The gamma function is defined as

ˆ ∞

0
tn−1e−t = Γ(n) = (n− 1)!

We see that we do not need to restrict ourselves to integers. We can extend it to real numbers Γ(x), while
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being careful that it will blow up for x ≤ 0. Now the question is, can we extend it to the complex plane

and when does such an integral converge.

Γ(z) =

ˆ ∞

0
dte−ttz−1

The convergence of the integral depends only on the real part of z, since

tx+iy−1 = tx−1tiy = tx−1eiy ln t

and the exponential is of unit magnitude and therefore only oscillates and doesn’t blow up, the integral

converges for Rez > 0. Just like we said when we define a function by a power series valid in a region, there

should be atleast one singularity on the boundary, we suspect that there are one or more singularities on

the line Rez = 0 and we want to find out what these singularities are. What we would like to do is try to

extend the definition to the left half plane Rez < 0 by analytically continuing it there.

4.2 Analytically continuing the Gamma Function

The part that gave us problem in the definition

Γ(z) =

ˆ ∞

0
dte−ttz−1, Rez > 0

is the tz−1. If the power were any higher, then there would not be any problem. We can increase the power

by doing integration by parts

Γ(z) = e−t t
z

z

∣∣∣∣∞
0

−
ˆ ∞

0
−e−t t

z

z
, Rez > 0

The first term vanishes in both the limits, provided z ̸= 0, i.e. for all z ̸= 0 it vanishes. This is already

satisfied in the region Rez > 0.

Γ(z) =
1

z

ˆ ∞

0
e−ttz

We therefore now have a representation that point by point matches the original function in the region

Rez > 0, has a pole explicitly at z = 0, and converges in the region Rez > −1. Therefore, starting with a

representation that converged only when Rez > 0, we have now found a representation that matches this

exactly in Rez > 0, has a pole at z = 0, and converges in the region Rez > −1. This is valid in a bigger

region and also exposes the singularity at z = 0.

Now we can play the same trick one more time to get

Γ(z) =
1

z(z + 1)

ˆ ∞

0
tz+1e−t

which now converges in Rez > −2 and has poles at z = 0,−1

28



We can similarly extend this to Rez > −n region in the left half of the complex plane, and therefore Γ(z)

is a meromorphic function with simple poles at all z = −n where n = 0, 1, 2, · · ·, with residue
(−1)n

n!
.

What we have done, is analytically continue the function Γ(z) step by step by using integration by parts to

extend it to the a larger region in the complex plane, but we have not given one single representation for

the entire complex plane. The above representations are still convergent only in a finite reason. There is a

single representation that is valid for the whole complex plane but this would need a discussion of branch

points, and therefore we postpone our discussion.

Another trick would be to use the fact that the Γ function satisfies

Γ(z + 1) = zΓ(z) =⇒ Γ(z) =
1

z
Γ(z + 1)

to analytically continue.

4.3 Log Derivative of Gamma Function

What happens if we took the derivative of the Γ function?

Define

ψ(z) =
d

dz
ln Γ(z) =

1

Γ(z)

d

dz
Γ(z)

The functional equation satisfied by this ψ(z) can be found by seeing that

ln Γ(z + 1) = ln z + lnΓ(z) =⇒ ψ(z + 1) =
1

z
+ ψ(z)

What is the singularity spectrum of ψ(z)?

Near z = −n, since the Γ function has a pole there, Γ(z) is guarenteed to be of the form

Γ(z) =
(−1)n

n!(z + n)
+ Regular part

To find what happens to ψ, we need to differentiate this w.r.to z and divide by Γ(z), which will imply that

near z = −n, the ψ will be proportional to
−1

z + n

Therefore, the ψ(z) is also a meromorphic function with simple poles at all z = −n with residue −1.

Now the question is what is the values of ψ at different z like 1, 2, etc.

See that

Γ(z) =
(z≈0)

1

z
+

∞∑
n=0

cnz
n
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The constants can be found by starting with a representation of the Gamma function and working out the

answer. Turns out the term c0 is a fundamental constant called the Euler-Mascheroni constant defined as

γ = lim
N→∞

( ∞∑
n=1

1

n
− ln(N)

)
≈ 0.5772

It is a conjecture that this is an irrational number, but it is not definitely known if it is indeed or not.

Therefore

Γ(z) =
(z≈0)

1

z
+ γ +

∞∑
n=1

cnz
n

with this,

ψ(z) =
(z≈0)

−1

z
− γ + · · ·

Substituting this in the functional equation we wrote above and letting z go to zero gives

ψ(1) = −γ

This immediately tells that ψ(2) = 1− γ, ψ(3) = 1 + 1
2 − γ and

ψ(n+ 1) = −γ +

n∑
i=1

1

i

4.3.1 Gaussian Integrals

A general Gaussian integral is of the form

ˆ ∞

0
due−au2

ur, Rea > 0, r > −1

A way to do this integral is to substitute

au2 = t =⇒ u =

√
t√
a

=⇒ du =
dt

2
√
at

which leads to the integral

ˆ ∞

0

dt

2
√
at
e−t

(√
t√
a

)r

=
1

2a
r+1
2

ˆ ∞

0
dte−tt

r
2 =

Γ
(
r+1
2

)
2a

r+1
2

Since ˆ ∞

0
due−au2

=

√
π

a

this immediately implies Γ
(
1
2

)
=

√
π using which we can now write the Gamma functions for all half odd

integrers.
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4.4 Mittag-Leffler Representation for Gamma Function

We know the locations of all the poles of the Gamma function, and therefore we can ask if it is possible to

find the Mittag-Leffler expansion for the function. The Γ function is of the form

Γ(z) =

ˆ ∞

0
tz−1e−t

The singularity in the Gamma function comes from tz−1 term as t→ 0. Therefore, we split the integral as

Γ(z) =

ˆ 1

0
dt tz−1e−t +

ˆ ∞

1
dt tz−1e−t

The second term is regular, and the first term is singular, and therefore we need to find the series repre-

sentation for the first part only. We can perform the integral explicitly

ˆ 1

0
dt tz−1e−t =

∞∑
n=0

(−1)n

n!

ˆ 1

0
dt tn+z−1 =

∞∑
n=0

(−1)n

n!

1

z + n

and therefore, we have the Mittag-Leffler representation

Γ(z) =

∞∑
n=0

(−1)n

n!

1

z + n
+

ˆ ∞

1
dt tz−1e−t

We did not choose a random splitting at a because in such a splitting we would not get the residues in the

series expansion, but there would be factors of a in the series, and therefore it would not be a Mittag-Leffler

representation.

4.5 The reciprocal of Γ

We saw that Γ(z) is a meromorphic function, that is it has only poles. It turns out that
1

Γ(z)
is an entire

function. The condition for the reciprocal of a meromorphic function to be entire is that the function

should have no zeroes, since if there are no zeroes, there are no poles.

Just like there is a Mittag-Leffler representation for meromorphic functions in terms of its poles, there

is a representation for an entire function in terms of its zeroes. That is, we ask that if α, β, etc to be

the locations of zeroes, then for a representation of the form (z − α)(z − β) · · ·. Such a product is called

Weierstrass product, and for the reciprocal of the Gamma function it is

1

Γ(z)
= zeγz

∞∏
n=1

(1 +
z

n
)e−

z
n

Note that at z = −n, Γ(z) had poles, so its reciprocal will have zeroes at these points.

Such a representation will typically have portions that are zeroes, and exponential of an entire function.
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4.6 Euler’s Beta Function

Defined as

β(m,n) =

ˆ 1

0
dt tm−1(1− t)n−1

with m,n > 0. At m = 0 it blows up due to the lower limit in the integration, and at n = 0 it blows up

due to the upper limit of the integration.

We can define this also as a function of two complex variables

β(z, w) =

ˆ 1

0
dt tz−1(1− t)w−1

This converges as long as Rez,Rew > 0.

We can again do integration by parts. If we try to extend to larger region in z, we need to integrate the

first term, while differentiating the second, and therefore we now move to a smaller region in the w plane.

If we tried it the other way, then the opposite would have happened. And therefore, it is pretty clear that

by using this trick, we cannot analytically continue in both the variables. There are other ways of doing

this, which we will discuss later.

There is yet another way, which is to show that the β functio is related to the Γ function and to use its

properties to analytically continue. We will take this up later after we discuss branch points. This diversion

was to explicitly show that the trick of integration by parts doesn’t already works.

There is no general prescription for analytic continuation. It varies case by case, and we need to come up

with such tricks to continue based on the analytic properties of the functions.

What is the connection between beta functions and gamma functions.

Consider the double integral

I(z, w) =

ˆ ∞

0
du

ˆ ∞

0
dv e−(u2+v2)u2z−1v2w−1

We can factor this integral into u and v integrals, the individual integrals being

ˆ ∞

0
du e−u2

u2z−1

which with the substitution u2 = t reduces to

1

2

ˆ ∞

0
e−ttz−1 =

1

2
Γ(z)
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and therfore we would get

I(z, w) =
1

4
Γ(z)Γ(w)

We can also do the integral I(z, w) in polar coordinates

ˆ ∞

0
rdr

ˆ π
2

0
dθ e−r2(r2)z+w−1(cos θ)2z−1(sin θ)2w−1

changing the variables s = r2

I(z, w) =
1

2

ˆ ∞

0
dse−s(s)z+w−1

ˆ π
2

0
dθ (cos θ)2z−1(sin θ)2w−1 =

1

2
Γ(z + w)

ˆ π
2

0
dθ (cos θ)2z−1(sin θ)2w−1

Now if we put (cos θ)2 = ξ =⇒ dξ = −2 cos θ sin θdθ, then we get

ˆ π
2

0
dθ (cos θ)2z−1(sin θ)2w−1 = −1

2

ˆ 0

1
dξ (ξ)z−1(1− ξ)w−1 =

1

2
β(z, w)

Therefore, we get

I(z, w) =
1

4
Γ(z + w)β(z, w) =

1

4
Γ(z)Γ(w)

from which we get

β(z, w) =
Γ(z)Γ(w)

Γ(z + w)

One of the consequences of this is that if we put w = 1− z, we get

β(z, 1− z) = Γ(z)Γ(1− z)

and one can show that this is equal to

β(z, 1− z) = Γ(z)Γ(1− z) =
π

sinπz

This formula is called the reflection formula for Γ(z)

We can also take log on both sides and differentiate to get

ψ(1− z)− ψ(z) = π cotπz

The Γ function also has the following Doubling property

Γ(2z) =
22z−1

√
π

Γ(z)Γ

(
z +

1

2

)
Taking the logarithm, we get

ln Γ(2z) = (2z − 1) ln 2 + lnΓ(z) + lnΓ

(
z +

1

2

)
− 1

2
lnπ
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Differentiating this,

2ψ(2z) = 2 ln 2 + ψ(z) + ψ

(
z +

1

2

)
Using this, we can write ψ for half integers.

2ψ(1) = 2 ln 2 + ψ

(
1

2

)
+ ψ(1) =⇒ ψ

(
1

2

)
= −2 ln 2 + ψ(1) = −2 ln 2− γ

We can also find ψ for other half integers too.
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5 Möbius Transformations

We can regard every analytic function as a map of the complex plane to the complex plane. For analytic

functions, the map has very specific properties.

Suppose an analytic function

w = f(z) = u+ iv

This defines a transformation z → w. and this transformation preserves angles between curves.

To see how, suppose two curves y = s(x), y = t(x) in the z plane intersecting at z0 = x0 + iy0 making

an angle θ. At z0, the tangent vectors (observe that working on the complex plane is exactly the same as

vector analysis 2D plane, with Rez being the x component of the vector and Imz being the y component)

on to the two curves would be

s→ δx+ i
ds

dx
δx, t→ δx+ i

dt

dx
δx

The curves intersect at an angle θ means that the angle between the tangents is θ, i.e.

cos θ =

(
1 +

ds

dx

dt

ds

)
√√√√(1 + ( ds

dx

)2
)(

1 +

(
dt

dx

)2
)

Now consider the map

w = f(z) = u(z) + iv(z)

under this, the points x0 + s/t(x0), x0 + δx+ i
(
s/t(x0) +

d
dxs/t(x0)δx

)
transform as

u(x0, s/t(x0)) + iv(x0, s/t(x0))

u

(
x0 + δx,

(
s/t(x0) +

d

dx
s/t(x0)δx

))
+ iv

(
x0 + δx,

(
s/t(x0) +

d

dx
s/t(x0)δx

))
which can be expanded in first order as

u(x0, s/t(x0)) + iv(x0, s/t(x0))

u(x0, s/t(x0)) + uxδx+ uy

(
d

dx
s/t(x0)δx

)
+ iv(x0, s/t(x0)) + ivxδx+ ivy

(
d

dx
s/t(x0)δx

)
where the subscripts indicate partial derivative w.r.to the variables.

Therefore, the tangent vectors to the curves in w space would be(
uxδx+ uy

(
d

dx
s/t(x0)δx

))
+ i

(
vxδx+ vy

(
d

dx
s/t(x0)δx

))
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and therefore the angle between them will be cos θ′ =((
ux + uy

ds
dx

) (
ux + uy

dt
dx

)
+
(
vx + vy

ds
dx

) (
vx + vy

dt
dx

))√((
ux + uy

ds
dx

) (
ux + uy

ds
dx

)
+
(
vx + vy

ds
dx

) (
vx + vy

ds
dx

)) ((
ux + uy

dt
dx

) (
ux + uy

dt
dx

)
+
(
vx + vy

dt
dx

) (
vx + vy

dt
dx

))
Now using the analyticity condition, ux = vy, uy = −vx((

ux − vx
ds
dx

) (
ux − vx

dt
dx

)
+
(
vx + ux

ds
dx

) (
vx + ux

dt
dx

))√((
ux − vx

ds
dx

) (
ux − vx

ds
dx

)
+
(
vx + ux

ds
dx

) (
vx + ux

ds
dx

)) ((
ux − vx

dt
dx

) (
ux − vx

dt
dx

)
+
(
vx + ux

dt
dx

) (
vx + ux

dt
dx

))
which can be expanded as

(u2x + v2x)
(
1 + ds

dx
dt
dx

)√(
(u2x + v2x)

(
1 +

(
ds
dx

)2))(
(u2x + v2x)

(
1 +

(
dt
dx

)2))
which is exactly equal to (

1 +
ds

dx

dt

ds

)
√√√√(1 + ( ds

dx

)2
)(

1 +

(
dt

dx

)2
) = cos θ

Therefore θ′ = θ, and the mapping w = f(z) preserves angles, i.e. it is a conformal transformation.

But usually this map is not invertible, for example f(z) = z2. So the question is what is the most general

one to one map that can be inverted, that takes you from z to w. It obviously can’t involve any higher

powers of z, it should be a linear map. But the map f(z) = a + bz is trivial, it doesn’t do anything

interesting, and the reason for this is that we have kept z = ∞ as a fixed point of the transformation, that

is, z = ∞ =⇒ w = ∞.

Suppose we now consider the Riemann sphere which is the extended complex plane, and we ask what is

the most general map between two Riemann spheres, without requiring infinity to be mapped to infinity,

then there is a non trivial map

z → w =
az + b

cz + d

where a, b, c, d are arbitrary complex numbers, and in order for the map to be not degenerate, we require

(a, b) to be linearly independent from (c, b), which is equivalent to the requirement that the determinant

ad− bc be non-zero.

ad− bc = 0 =⇒ a

b
=
c

d
=⇒ f(z) =

b

d
×

a
b z + 1
c
dz + 1

=
b

d

This map is sometimes called Linear Fractional Transformation, but we choose to call it the Möbius

Transformation
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We see that if we take some constant and multiply a, b, c, d all by it, then it cancels out and the map

remains the same. Therefore we can normalise the map, and we choose the map such that ad− bc = 1. If

ad− bc ̸= 1, we can divide each of the numbers such that the determinant is 1 and the map is unchanged.

The inverse transformation is

z =
dw − b

−cw + a

Under this map,

z =
−d
c

=⇒ w = ∞, & w =
a

c
=⇒ z = ∞

5.1 Fixed points of Möbius transformation

These transformations have very interesting properties. How would one proceed to study these properties?

Whenever looking at a transformation, it is illuminating to look at its fixed point and work around those

points . For this transformation, the fixed point is

z =
az + b

cz + d
=⇒ cz2+(d−a)z−b = 0 =⇒ ξ1/2 =

(a− d)±
√

(a− d)2 + 4bc

2c
= ξ1/2 =

(a− d)±
√
(a+ d)2 − 4

2c

where in the last step we used the normalisation ad− bc = 1.

Now the possible cases are

1. ξ1, ξ2 finite and distinct — c ̸= 0 and a+ d ̸= 2

2. ξ1 = ξ2 = ξ — c ̸= 0 and a+ d = 2

3. ξ1 finite, ξ2 = ∞ — c = 0 =⇒ ad = 1 and f(z) = a2z + ab, and therefore ξ1 =
ab

1− a2

4. ξ1 = ξ2 = ∞ — c = 0, a = d =⇒ w = z + ab. But ad = 1 =⇒ a2 = 1. Therefore w = z ± b which

are trivial translations.

The next question to ask is how would we classify these transformations, and it is useful to introduce a

concept called the cross-ratio of four points. Given four points on a Riemann sphere, z1, z2, z3, z4, the

cross-ratio is defined as the object

[z1, z2; z3, z4]
def
=

(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

This cross-ratio has very useful features. One important feature is that under a Möbius transformation,

this ratio does not change at all. Given three points z1 → w1, z2 → w2, z3 → w3, we can always construct

the unique map z → w using the fact that

[z, z1; z2, z3] = [w,w1;w2, w3]
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If we specify three points, we specify a circle. And therefore Möbius transformation maps circles to circles

in the Riemann sphere.

Now we can ask what happens to the points in the neighbourhood of fixed points under the transformation.

First see that

[z,∞; ξ1, ξ2] = [w,
a

c
; ξ1, ξ2]

therefore,
(z − ξ1)

(z − ξ2)
=

(w − ξ1)(
a
c − ξ2)

(w − ξ2)(
a
c − ξ1)

=⇒ (w − ξ1)

(w − ξ2)
=

(a− cξ1)

(a− cξ2)

(z − ξ1)

(z − ξ2)

Therefore, under the Möbius transformation, the ratio of differences of z from the two fixed points trans-

forms by just a multiplication by a constant, called the multiplier

K =
(a− cξ1)

(a− cξ2)
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